Synthesis and photophysical investigations of pyridine-pyrazolate bound boron(III) diaryl complexes

Author:

Javaid Rashid,Rehman Aziz Ul,Ahmed Manan,Karouei Mohammad Hashemi,Sayyadi Nima

Abstract

AbstractThis study presents the design and synthetic pathway of unsymmetric ligands based on pyridine-pyrazolate scaffold with Donor–Acceptor (D–A) molecular arrays and their boron complexes to achieve a large Stokes shift. Intermolecular charge transfer (ICT) triggered by the uneven molecular charge distribution from electronically dense pyrazolate (donor) part of the ligands to electron-deficient boron centre (acceptor) resulted in a mega Stokes shift up to 263 nm for selected compounds while retaining the characteristic quantum efficiency and chemical stability. The photophysical properties of derivatization of pyrazolate group in the pyridine-pyrazolate scaffold of diaryl boron complexes were explored based on UV–Visible, steady-state and time-resolved fluorescence spectroscopy. An interesting dual emission along with quenching behaviour was also observed for 2-(6-methoxynaphthelene) 5-(2-pyridyl) pyrazolate boron complex (P5) due to the formation of a twisted intermolecular charge transfer (TICT) state from a locally excited (LE) state rendering it a potential candidate for sensing applications based on H-Bond quenching. In addition, the extended excited state lifetime of the reported compounds compared to classical boron-dipyrromethene (BODIPY) makes them suitable as potential probes for analytical applications requiring a longer excited state lifetime.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3