Biological performance and oviposition preference of tomato pinworm Tuta absoluta when offered a range of Solanaceous host plants

Author:

Silva Gerson A.ORCID,Queiroz Elenir A.ORCID,Arcanjo Lucas P.,Lopes Mayara C.,Araújo Tamiris A.ORCID,Galdino Tarcisio S. V.,Samuels Richard I.ORCID,Rodrigues-Silva Nilson,Picanço Marcelo C.

Abstract

AbstractThe tomato pinworm Tuta absoluta (Lepidoptera: Gelechuidae) is native to South America and has now become the main tomato pest in Europe, Africa and Asia. The wide range of host plants attacked by this pest has been reported as one of the main reasons for the success of this important insect species. However, the information currently available on the biological performance of T. absoluta on Solanaceae has been obtained from a limited number of host species. The Solanaceae family is composed of thousands of species, many of which are potential hosts for T. absoluta. Our results showed that the highest oviposition rates occurred on cultivated tomato plants, potato and wild tomato. The lowest rates occurred on “gilo”, “jurubeba”, green pepper and pepper. The highest survival rates of the immature stages occurred on potato and the lowest on pepper, green pepper and “jurubeba”. Female fertility, following infestation of the different plant species, was highest for insects that developed on tomato or potato and the lowest rates were seen on American black nightshade. The net reproductive rate and the intrinsic growth rate were highest on potato and tomato. Cluster analysis grouped tomato and potato as highly susceptible to attack, American black nightshade, juá, eggplant, gilo and wild tomato as moderately susceptible, whilst pepper, green pepper and jurubeba were categorized as resistant to T. absoluta. These results clearly demonstrate that the choice of solanaceous host plant species has a direct impact on the fitness parameters of the tomato pinworm as well as survival potential, dispersion and establishment at new sites. These results are important for the planning of integrated pest management strategies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference61 articles.

1. di Castri, F. History of biological invasions with emphasis on the Old World. In Biological invasions: a global perspective, (ed. Drake J., di Castri, F., Groves, R., Kruger, F., Mooney, H. A., Rejmanek, M., Williamson, M.) 1–30 (Wiley, New York, 1989).

2. Reeve, E. Domestication of Plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley (ed. Zohary, D. & Hopf, M.) (Clarendon Press, Oxford, 1994).

3. Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

4. Worner, S. P. & Gevrey, M. Modelling global insect pest species assemblages to determine risk of invasion. J. Appl. Ecol. 43, 858–867 (2006).

5. Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3