Abstract
AbstractWe examined the effect of total and afferent renal denervation (RDN) on hypertension and the renin-angiotensin system (RAS) in a rodent model of juvenile-onset polycystic kidney disease (PKD). Lewis Polycystic Kidney (LPK) and control rats received total, afferent or sham RDN by periaxonal application of phenol, capsaicin or normal saline, respectively, and were monitored for 4-weeks. Afferent RDN did not affect systolic blood pressure (SBP) determined by radiotelemetry in either strain (n = 19) while total RDN significantly reduced SBP in Lewis rats 4-weeks post-denervation (total vs. sham, 122 ± 1 vs. 130 ± 2 mmHg, P = 0.002, n = 25). Plasma and kidney renin content determined by radioimmunoassay were significantly lower in LPK vs. Lewis (plasma: 278.2 ± 6.7 vs. 376.5 ± 11.9 ng Ang I/ml/h; kidney: 260.1 ± 6.3 vs. 753.2 ± 37.9 ng Ang I/mg/h, P < 0.001, n = 26). These parameters were not affected by RDN. Intrarenal mRNA expression levels of renin, angiotensinogen, angiotensin-converting enzyme (ACE)2, and angiotensin II receptor type 1a were significantly lower, whereas ACE1 expression was significantly higher in the LPK vs. Lewis (all P < 0.05, n = 26). This pattern of intrarenal RAS expression was not changed by RDN. In conclusion, RDN does not affect hypertension or the RAS in the LPK model and indicates RDN might not be a suitable antihypertensive strategy for individuals with juvenile-onset PKD.
Funder
Hillcrest Foundation
China Scholarship Council / Macquarie University Research Scholarship
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献