Visible-NIR hyperspectral classification of grass based on multivariate smooth mapping and extreme active learning approach

Author:

Zhao Xuanhe,Pan Xin,Yan Weihong,Zhang Shengwei

Abstract

AbstractGrass community classification is the basis for the development of animal husbandry and dynamic monitoring of environment, which has become a critical problem to further strengthen the intelligent management of grassland. Compared with grass survey based on satellite remote sensing, the visible near infrared (NIR) hyperspectral not only monitor dynamically in a short distance, but also have high dimensions and detailed spectral information in each pixel. However, the hyperspectral labeled sample for classification is expensive and manual selection is more subjective. In order to solve above limitations, we proposed a visible-NIR hyperspectral classification model for grass based on multivariate smooth mapping and extreme active learning (MSM–EAL). Firstly, MSM is used to preprocess and reconstruct the spectrum. Secondly, by jointing XGBoost and active learning (AL), the advanced samples with the largest amount of information are actively selected to improve the performance of target classification. Innovation lies in: (1) MSM global enhanced preprocessing spectral reconstruction algorithm is proposed, in which isometric feature mapping is effectively applied to the grass hyperspectral for the first time. (2) EAL framework is constructed to solve the issue of high cost and small number for hyperspectral labeled samples, at the same time, enhance the physical essence behind spectral classification more intuitively. A field hyperspectral collection platform is assembled to establish nm resolution visible-NIR hyperspectral dataset of grass, Grass1, containing 750 samples, which to verify the effectiveness of the model. Experiments on the Grass1 dataset confirmed that compared with the full spectrum, the time consumption of MSM was reduced by 9.471 s with guaranteed overall accuracy (OA). Comparing EAL with AL, and other classification algorithms, EAL improves OA 22.2% over AL, and XAL has the best performance value on Kappa, Macro, Recall and F1-score, respectively. Altogether, the lightweight MSM–EAL model realizes intelligent and real-time classification, providing a new method for obtaining high-precision inter group classification of grass.

Funder

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Found

Technological Achievements of Inner Mongolia Autonomous Region of China

Natural Science Foundation of Inner Mongolia Autonomous Region of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3