A novel medical image segmentation approach by using multi-branch segmentation network based on local and global information synchronous learning

Author:

Jin Shangzhu,Yu Sheng,Peng Jun,Wang Hongyi,Zhao Yan

Abstract

AbstractIn recent years, there have been several solutions to medical image segmentation, such as U-shaped structure, transformer-based network, and multi-scale feature learning method. However, their network parameters and real-time performance are often neglected and cannot segment boundary regions well. The main reason is that such networks have deep encoders, a large number of channels, and excessive attention to local information rather than global information, which is crucial to the accuracy of image segmentation. Therefore, we propose a novel multi-branch medical image segmentation network MBSNet. We first design two branches using a parallel residual mixer (PRM) module and dilate convolution block to capture the local and global information of the image. At the same time, a SE-Block and a new spatial attention module enhance the output features. Considering the different output features of the two branches, we adopt a cross-fusion method to effectively combine and complement the features between different layers. MBSNet was tested on five datasets ISIC2018, Kvasir, BUSI, COVID-19, and LGG. The combined results show that MBSNet is lighter, faster, and more accurate. Specifically, for a $$320 \times 320$$ 320 × 320 input, MBSNet’s FLOPs is 10.68G, with an F1-Score of $$85.29\%$$ 85.29 % on the Kvasir test dataset, well above $$78.73\%$$ 78.73 % for UNet++ with FLOPs of 216.55G. We also use the multi-criteria decision making method TOPSIS based on F1-Score, IOU and Geometric-Mean (G-mean) for overall analysis. The proposed MBSNet model performs better than other competitive methods. Code is available at https://github.com/YuLionel/MBSNet.

Funder

Natural Science Foundation of Chongqing

Scientific Research Fund of Chongqing University of Science and Technology

Cooperation Project between Chongqing Municipal Under graduate Universities and Institutes Affiliated to the Chinese Academy of Sciences in 2021

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3