Comparative chloroplast genome analyses of cultivated spinach and two wild progenitors shed light on the phylogenetic relationships and variation

Author:

She Hongbing,Liu Zhiyuan,Xu Zhaosheng,Zhang Helong,Cheng Feng,Wu Jian,Wang Xiaowu,Qian Wei

Abstract

AbstractSpinacia is a genus of important leafy vegetable crops worldwide and includes cultivated Spinacia oleracea and two wild progenitors, Spinacia turkestanica and Spinacia tetrandra. However, the chloroplast genomes of the two wild progenitors remain unpublished, limiting our knowledge of chloroplast genome evolution among these three Spinacia species. Here, we reported the complete chloroplast genomes of S. oleracea, S. turkestanica, and S. tetrandra obtained via Illumina sequencing. The three chloroplast genomes exhibited a typical quadripartite structure and were 150,739, 150,747, and 150,680 bp in size, respectively. Only three variants were identified between S. oleracea and S. turkestanica, whereas 690 variants were obtained between S. oleracea and S. tetrandra, strongly demonstrating the close relationship between S. turkestanica and S. oleracea. This was further supported by phylogenetic analysis. We reported a comprehensive variant dataset including 503 SNPs and 83 Indels using 85 Spinacia accessions containing 61 S. oleracea, 16 S. turkestanica, and eight S. tetrandra accessions. Thirteen S. oleracea accessions were derived through introgression from S. turkestanica that acts as the maternal parent. Together, these results provide a valuable resource for spinach breeding programs and improve our understanding of the phylogenetic relationships within Amaranthaceae.

Funder

Natural Science Foundation of China

Beijing Scientific Program of Municipal Commission of Science and Technology

National Key Research and Development Program of China

Chinese Academy of Agricultural Sciences Innovation Project

Central Public-interest Scientific Institution Basal Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3