Electromagnetic field-enhanced novel tubular electrocoagulation cell for effective and low-cost color removal of beet sugar industry wastewater

Author:

Fadali Olfat A.,Ali Rasha H.,Nassar Mamdouh M.,Mahmoud Mohamed S.,Abdel-Aty Marwa M.,Barakat Nasser A. M.

Abstract

AbstractThe treatment of real beet sugar mill effluent by a modified electrocoagulation process is proposed. An innovative design of an electromagnetic field-enhanced electrochemical cell consisting of a tubular screen roll anode and two cathodes (an inner and outer cathode) has been used. Different parameters have been investigated including current density, effluent concentration, NaCl concentration, rpm, number of screen layers per anode, and the effect of addition and direction of an electromagnetic field. The results showed that, under the optimum conditions, current density of 3.13 A/m2, two screens per anode, NaCl concentration of 12 g/l, and rotation speed of 120 rpm, the percentage of color removal was 85.5% and the electrical energy consumption was 3.595 kWh/m3. However, the presence of an electromagnetic field distinctly enhanced the energy consumption and the color removal percentage. Numerically, applying the magnetic field resulted in performing a color removal efficiency of 97.7% using a power consumption of 2.569 KWh/m3which is considered a distinct achievement in industrial wastewater treatment process. The strong enhancement in color removal using a low power consumption significantly reduced the required treatment cost; the estimated treatment cost was 0.00017 $/h.m2. This design has proven to be a promising one for the continuous treatment of beet sugar industrial effluents and to be a competitor to the currently available techniques.

Funder

Minia University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3