In vitro efficacy of different PEGylation designs on cathelicidin-like peptide with high antibacterial and antifungal activity

Author:

Sahsuvar SerayORCID,Kocagoz TanilORCID,Gok OzgulORCID,Can OzgeORCID

Abstract

AbstractRecent reports on antibiotic resistance have highlighted the need to reduce the impact of this global health issue through urgent prevention and control. The World Health Organization currently considers antibiotic resistance as one of the most dangerous threats to global health. Therefore, Antimicrobial peptides (AMPs) are promising for the development of novel antibiotic molecules due to their high antimicrobial effects, non-inducing antimicrobial resistance (AMR) properties, and broad spectrum. Hence, in this study, we developed novel antimicrobial peptide/polymer conjugates to reduce the adverse effects of TN6 (RLLRLLLRLLR) peptide. We demonstrate how our constructs function in vitro in terms of antimicrobial activity, hemolytic activity, cytotoxicity, and protease resistance. Our findings show that our molecules are effective against different types of microorganisms such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant S. aureus, vancomycin-resistant Enteroccus faecium, and Candida albicans, which are known to be pathogenic and antibiotic-resistant. Our constructs generally showed low cytotoxicity relative to the peptide in HaCaT and 3T3 cells. Especially these structures are very successful in terms of hemotoxicity. In the bacteremia model with S. aureus, the naked peptide (TN6) was hemotoxic even at 1 µg/mL, while the hemotoxicity of the conjugates was considerably lower than the peptide. Remarkably in this model, the hemolytic activity of PepC-PEG-pepC conjugate decreased 15-fold from 2.36 to 31.12 µg/mL compared to the bacteria-free 60-min treatment. This is proof that in the case of bacteremia and sepsis, the conjugates specifically direct to bacterial cell membranes rather than red blood cells. In addition, the PepC-PEG-pepC conjugate is resistant to plasma proteases. Moreover, morphological and intracellular damage of the peptide/conjugates to Escherichia coli are demonstrated in SEM and TEM images. These results suggest our molecules can be considered potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in clinical cases such as bacteremia and sepsis.

Funder

Acibadem University Scientific Research Projects Commission

Scientific and Technological Research Council of Turkiye

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference33 articles.

1. Manyi-Loh, C., Mamphweli, S., Meyer, E. & Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Mol. J. Synth. Chem. Nat. Prod. Chem. 23, 795 (2018).

2. Laxminarayan, R. et al. Access to effective antimicrobials: A worldwide challenge. Lancet Lond. Engl. 387, 168–175 (2016).

3. Ventola, C. L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 40, 277 (2015).

4. Prillaman, M. Climate change is making hundreds of diseases much worse. Nature https://doi.org/10.1038/d41586-022-02167-z (2022).

5. Le, C. F., Fang, C. M. & Sekaran, S. D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 61, e0234016 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3