Continuous and automatic mortality risk prediction using vital signs in the intensive care unit: a hybrid neural network approach

Author:

Baker Stephanie,Xiang Wei,Atkinson Ian

Abstract

AbstractMortality risk prediction can greatly improve the utilization of resources in intensive care units (ICUs). Existing schemes in ICUs today require laborious manual input of many complex parameters. In this work, we present a scheme that uses variations in vital signs over a 24-h period to make mortality risk assessments for 3-day, 7-day, and 14-day windows. We develop a hybrid neural network model that combines convolutional (CNN) layers with bidirectional long short-term memory (BiLSTM) to predict mortality from statistics describing the variation of heart rate, blood pressure, respiratory rate, blood oxygen levels, and temperature. Our scheme performs strongly compared to state-of-the-art schemes in the literature for mortality prediction, with our highest-performing model achieving an area under the receiver-operator curve of 0.884. We conclude that the use of a hybrid CNN-BiLSTM network is highly effective in determining mortality risk for the 3, 7, and 14 day windows from vital signs. As vital signs are routinely recorded, in many cases automatically, our scheme could be implemented such that highly accurate mortality risk could be predicted continuously and automatically, reducing the burden on healthcare providers and improving patient outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference47 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time machine learning model to predict short-term mortality in critically ill patients: development and international validation;Critical Care;2024-03-14

2. A Novel Continuous Real-Time Vital Signs Viewer for Intensive Care Units: Design and Evaluation Study;JMIR Human Factors;2024-01-05

3. Mathematical Model of COVID-19 Progression: Prediction of Severity and Outcome;Mathematical Models and Computer Simulations;2023-11-04

4. The Internet of Things-Enabled Smart City: An In-Depth Review of Its Domains and Applications;2023 13th International Conference on Computer and Knowledge Engineering (ICCKE);2023-11-01

5. Machine learning for mortality risk prediction with changing patient demographics;2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB);2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3