Living mulch enhances soil enzyme activities, nitrogen pools and water retention in giant reed (Arundo donax L.) plantations

Author:

Elhawat Nevien,Kovács Andrea Balla,Antal Gabriella,Kurucz Erika,Domokos-Szabolcsy Éva,Fári Miklós Gábor,Alshaal Tarek

Abstract

AbstractGiant reed (Arundo donax L.) is one of the most well-studied perennial biomass crops because of its high productivity and potential to store carbon. Yet, little information on controlling weeds in giant reed plantations and their influences on the soil ecosystem is available. In the present study, three different weed control methods, i.e., intercropping (living mulch) with sweet clover (Melilotus officinalis L.), herbicide (glyphosate), and hoeing, were investigated in a 2-year giant reed farm. The intercropping presented significantly higher values (on average) of all the tested soil properties than herbicide and hoeing, except for the catalase activity and pH. The dehydrogenase, phosphatase, and urease activities in the soil under intercropping were higher than the herbicide by 75%, 65%, and 80% (on average), respectively. Also, the soil under intercropping had higher soil organic matter (SOM) and soil respiration than the herbicide by 20% and 25%, respectively. Intercropping also increased the content of N pools, i.e., NO3˗N, NH4+˗N, Org-N, and Total-N by 517%, 356%, 38%, and 137%, respectively, compared to herbicide. These findings illustrated that controlling weeds in biomass plantations through legume intercropping brings benefits not only to soil properties but also to biomass productivity.

Funder

University of Debrecen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3