Synergistic activity of pomegranate rind extract and Zn (II) against Candida albicans under planktonic and biofilm conditions, and a mechanistic insight based upon intracellular ROS induction

Author:

Celiksoy Vildan,Moses Rachael L.,Sloan Alastair J.,Moseley Ryan,Heard Charles M.

Abstract

AbstractCandida albicans (C. albicans) is an opportunistic pathogen, which causes superficial infection and can lead to mortal systemic infections, especially in immunocompromised patients. The incidence of C. albicans infections is increasing and there are a limited number of antifungal drugs used in treatment. Therefore, there is an urgent need for new and alternative antifungal drugs. Pomegranate rind extract (PRE) is known for its broad-spectrum antimicrobial activities, including against C. albicans and recently, PRE and Zn (II) have been shown to induce synergistic antimicrobial activity against various microbes. In this study, the inhibitory activities of PRE, Zn (II) and PRE in combination with Zn (II) were evaluated against C. albicans. Antifungal activities of PRE and Zn (II) were evaluated using conventional microdilution methods and the interaction between these compounds was assessed by in vitro checkerboard and time kill assays in planktonic cultures. The anti-biofilm activities of PRE, Zn (II) and PRE in combination with Zn (II) were assessed using confocal laser scanning microscopy, with quantitative analysis of biofilm biomass and mean thickness analysed using COMSTAT2 analysis. In addition, antimicrobial interactions between PRE and Zn (II) were assayed in terms reactive oxygen species (ROS) production by C. albicans. PRE and Zn (II) showed a potent antifungal activity against C. albicans, with MIC values of 4 mg/mL and 1.8 mg/mL, respectively. PRE and Zn (II) in combination exerted a synergistic antifungal effect, as confirmed by the checkerboard and time kill assays. PRE, Zn (II) and PRE and Zn (II) in combination gave rise to significant reductions in biofilm biomass, although only PRE caused a significant reduction in mean biofilm thickness. The PRE and Zn (II) in combination caused the highest levels of ROS production by C. albicans, in both planktonic and biofilm forms. The induction of excess ROS accumulation in C. albicans may help explain the synergistic activity of PRE and Zn (II) in combination against C. albicans in both planktonic and biofilm forms. Moreover, the data support the potential of the PRE and Zn (II) combination as a novel potential anti-Candida therapeutic system.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3