A sustainable approach for the degradation kinetics study and stability assay of the SARS-CoV-2 oral antiviral drug Molnupiravir

Author:

Edrees Fadwa H.,Draz Mohammed E.,Saad Ahmed S.,Hammad Sherif F.,Mohamed Heba M.

Abstract

AbstractMolnupiravir (MPV) is the first direct-acting oral antiviral drug that effectively decreases nasopharyngeal infections with SARS-CoV-2 virus. The stability of MPV was tested by subjecting the drug to various stress conditions. The drug is liable to oxidative, acidic, and alkaline degradation and showed significant stability against thermal degradation. Mass spectrometry identified the degradation products and guided suggestion of the degradation patterns. Interestingly, while inspecting the UV-absorption spectra, we observed no absorbance at 270 nm for the products of the three degradation pathways (c.f. intact MPV). Direct spectrophotometry seemed a solution that perfectly fit the purpose of the stability assay method in our case. It avoids sophisticated instrumentation and complex mathematical data manipulation. The method determined MPV accurately (100.32% ± 1.62) and selectively (99.49% ± 1.63) within the linear range of 1.50 × 10–5–4.0 × 10–4 M and down to a detection limit of 0.48 × 10–5 M. The proposed method is simple and does not require any preliminary separation or derivatization steps. The procedure proved its validity as per the ICH recommendations. The specificity was assessed in the presence of up to 90% degradation products. The study evaluated the greenness profile of the proposed analytical procedure using the National Environmental Methods Index (NEMI), the Analytical Eco-Scale, and the Green Analytical Procedure Index (GAPI). The three metrics unanimously agreed that the developed procedure results in a greener profile than the reported method. The method investigated the degradation reactions' kinetics and evaluated the reaction order, rate constant, and half-life time for each degradation process.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference26 articles.

1. WHO Coronavirus (COVID-19) Dashboard (accessed April 2023); https://covid19.who.int/.

2. National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 145996610, EIDD-2801 (accessed 5 January 2022); https://pubchem.ncbi.nlm.nih.gov/compound/eidd-2801.

3. Allen, L. V. Molnupiravir 80 mg/mL in Ora-Sweet SF. US Pharm. 47(4), 58–59 (2022).

4. First oral antiviral for COVID-19, Lagevrio (molnupiravir), approved by MHRA. https://www.gov.uk/government/news/first-oral-antiviral-for-covid-19-lagevrio-molnupiravir-approved-by-mhra.

5. Coronavirus (COVID-19) Update: FDA authorizes additional oral antiviral for treatment of COVID-19 in certain adults. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3