Efficacy of alumina nanoparticles as a controllable tool for mortality and biochemical parameters of Culex pipiens

Author:

El‑Barkey Nehad M.,Nassar Mostafa Y.,El‑Khawaga Aya H.,Kamel Aida S.,Baz Mohamed M.

Abstract

AbstractMosquitoes still pose a clear risk to human and animal health. Recently, nanomaterials have been considered one of the cost-effective solutions to this problem. Therefore, alumina nanoparticles (Al) were synthesized using an auto-combustion method, followed by calcination at 600 and 800 °C. Glucose (G) and sucrose (Su) were used as fuels and the combustion was performed at pH 2, 7, and 10. The as-synthesized Al2O3 nanoparticles were characterized by XRD, FTIR, SEM, and TEM. Alumina nanoparticles prepared using G and Su fuels at pH 7 and 800 °C (Al-G7-800 and Al-Su7-800) have crystallite sizes of 3.9 and 4.05 nm, respectively. While the samples (Al-G7-600 and Al-Su7-600) synthesized at pH 7 and 600 °C were amorphous. The prepared alumina nanoparticles were applied to the larval and pupal stages of Culex pipiens. The results showed that alumina nanoparticles cause higher mortality in the 1st larval instar than in all other larval instars and pupal stages of Culex pipiens after treatment at a high concentration of 200 ppm. Additionally, the larval duration after treatment with LC50 concentrations of alumina (Al-G7-800 and Al-Su7-800) was 31.7 and 23.6 days, respectively, compared to the control (13.3 days). The recorded data found that the content of glutathione-S-transferase, alkaline/acid phosphatase, β/α-esterase, and total protein were altered upon treatment with the LC50 concentration of alumina (Al-G7-800) nanoparticles. Based on these findings, alumina nanoparticles are a promising candidate as a potential weapon to control pests and mosquitoes.

Funder

Benha University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3