An atomistic study of sticking, bouncing, and aggregate destruction in collisions of grains with small aggregates

Author:

Nietiadi Maureen L.,Urbassek Herbert M.,Rosandi Yudi

Abstract

AbstractMolecular dynamics simulations are used to study central collisions between spherical grains and between grains and small grain aggregates (up to 5 grains). For a model material (Lennard-Jones), grain–grain collisions are sticking when the relative velocity v is smaller than the so-called bouncing velocity and bouncing for higher velocities. We find a similar behavior for grain–aggregate collisions. The value of the bouncing velocity depends only negligibly on the aggregate size. However, it is by 35% larger than the separation velocity needed to break a contact; this is explained by energy dissipation processes during the collision. The separation velocity follows the predictions of the macroscopic Johnson–Kendall–Roberts theory of contacts. At even higher collision velocities, the aggregate is destroyed, first by the loss of a monomer grain and then by total disruption. In contrast to theoretical considerations, we do not find a proportionality of the collision energy needed for destruction and the number of bonds to be broken. Our study thus sheds novel light on the foundations of granular mechanics, namely the energy needed to separate two grains, the difference between grain–grain and grain–aggregate collisions, and the energy needed for aggregate destruction.

Funder

Universitas Padjadjaran

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3