Adjunctive therapy with the Tie2 agonist Vasculotide reduces pulmonary permeability in Streptococcus pneumoniae infected and mechanically ventilated mice

Author:

Lask Aina,Gutbier Birgitt,Kershaw Olivia,Nouailles Geraldine,Gruber Achim D.,Müller-Redetzky Holger C.,Chackowicz Steven,Hamilton Douglas A.,Van Slyke Paul,Witzenrath Martin

Abstract

AbstractCommunity acquired pneumonia, mainly caused by Streptococcus pneumoniae (S.pn.), is a common cause of death worldwide. Despite adequate antibiotic therapy, pneumococcal pneumonia can induce pulmonary endothelial hyperpermeability leading to acute lung injury, which often requires mechanical ventilation (MV) causing ventilator-induced lung injury (VILI). Endothelial stabilization is mediated by angiopoietin-1 induced Tie2 activation. PEGylated (polyethylene glycol) Tie2-agonist Vasculotide (VT) mimics Angiopietin-1 effects. Recently, VT has been shown to reduce pulmonary hyperpermeability in murine pneumococcal pneumonia. The aim of this study was to determine whether VT reduces lung damage in S.pn. infected and mechanically ventilated mice. Pulmonary hyperpermeability, immune response and bacterial load were quantified in S.pn. infected mice treated with Ampicillin + /−VT and undergoing six hours of MV 24 h post infection. Histopathological lung changes, Tie2-expression and -phosphorylation were evaluated. VT did not alter immune response or bacterial burden, but interestingly combination treatment with ampicillin significantly reduced pulmonary hyperpermeability, histological lung damage and edema formation. Tie2-mRNA expression was reduced by S.pn. infection and/or MV but not restored by VT. Moreover, Tie2 phosphorylation was not affected by VT. These findings indicate that VT may be a promising adjunctive treatment option for prevention of VILI in severe pneumococcal pneumonia.

Funder

German Research Foundation

German Federal Ministry of Education and Research German Ministry of Education

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3