Deep learning visual field global index prediction with optical coherence tomography parameters in glaucoma patients

Author:

Kim Dongbock,Seo Sat Byul,Park Seong Joon,Cho Hyun-kyung

Abstract

AbstractThe aim of this study was to predict three visual filed (VF) global indexes, mean deviation (MD), pattern standard deviation (PSD), and visual field index (VFI), from optical coherence tomography (OCT) parameters including Bruch's Membrane Opening-Minimum Rim Width (BMO-MRW) and retinal nerve fiber layer (RNFL) based on a deep-learning model. Subjects consisted of 224 eyes with Glaucoma suspects (GS), 245 eyes with early NTG, 58 eyes with moderate stage of NTG, 36 eyes with PACG, 57 eyes with PEXG, and 99 eyes with POAG. A deep neural network (DNN) algorithm was developed to predict values of VF global indexes such as MD, VFI, and PSD. To evaluate performance of the model, mean absolute error (MAE) was determined. The MAE range of the DNN model on cross validation was 1.9–2.9 (dB) for MD, 1.6–2.0 (dB) for PSD, and 5.0 to 7.0 (%) for VFI. Ranges of Pearson’s correlation coefficients were 0.76–0.85, 0.74–0.82, and 0.70–0.81 for MD, PSD, and VFI, respectively. Our deep-learning model might be useful in the management of glaucoma for diagnosis and follow-up, especially in situations when immediate VF results are not available because VF test requires time and space with a subjective nature.

Funder

The National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP), Republic of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3