Electrochemical Redox Refrigeration

Author:

McKay Ian S.,Kunz Larissa Y.,Majumdar ArunORCID

Abstract

Abstract The high conformational entropy change of the Fe(CN)63−/4− redox reaction can be used as the basis for a compact electrochemical refrigerator. This device is comparable to a liquid version of a Peltier cooler, with two distinct advantages: (1) the entropy change per carrier (1.5 mV/K) of the electrochemical refrigerant is more than 5 times larger than that of state-of-the-art solid thermoelectric materials; and (2) the liquid electrolyte can be advected continuously away from the cooling junction, so that Joule heating in the bulk element does not diminish the delivered cooling effect. In this work, we use infrared microscopy to visualize the thermal aspects of Fe(CN)63−/4− redox, and compare the estimated cooling to calculated values with and without electrolyte flow. While the temperature differences achieved in a single cell are small (~50 mK) and not enhanced by electrolyte flow, the cooling power density (~0.5 W/cm3) is high when normalized to the small electrode volume. Non-dimensional figures of merit are proposed to identify electrochemical redox species for maximizing the cooling effect.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference33 articles.

1. U.S. Energy Information Administration. Annual Energy Outlook, https://www.eia.gov/outlooks/aeo/ (2019).

2. United Nations Population Division. World Population Prospects, 2017 Revision: Key Findings and Advance Tables, https://population.un.org/wpp/Publications/ (2019).

3. California Air Resources Board. High-GWP Refrigerants, https://ww2.arb.ca.gov/resources/documents/high-gwp-refrigerants (2019).

4. Velders, G. J. M., Fahey, D. W., Daniel, J. S., McFarland, M. & Andersen, S. O. The large contribution of projected HFC emissions to future climate forcing. Proc. Natl. Acad. Sci. USA 106, 10949–10954 (2009).

5. United Nations Treaty Collection. Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer, https://treaties.un.org/Pages/Home.aspx?clang=_en (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3