Genome-wide in silico characterization and stress induced expression analysis of BcL-2 associated athanogene (BAG) family in Musa spp.

Author:

Dash Ashutosh,Ghag Siddhesh B.

Abstract

AbstractProgrammed cell death (PCD) is a genetically controlled process for the selective removal of damaged cells. Though understanding about plant PCD has improved over years, the mechanisms are yet to be fully deciphered. Among the several molecular players of PCD in plants, B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones are evolutionary conserved and regulate cell death, growth and development. In this study, we performed a genome-wide in silico analysis of the MusaBAG gene family in a globally important fruit crop banana. Thirteen MusaBAG genes were identified, out of which MusaBAG1, 7 and 8 genes were found to have multiple copies. MusaBAG genes were distributed on seven out of 11 chromosomes in banana. Except for one paralog of MusaBAG8 all the other 12 proteins have characteristic BAG domain. MusaBAG1, 2 and 4 have an additional ubiquitin-like domain whereas MusaBAG5-8 have a calmodulin binding motif. Most of the MusaBAG proteins were predicted to be localized in the nucleus and mitochondria or chloroplast. The in silico cis-regulatory element analysis suggested regulation associated with photoperiodic control, abiotic and biotic stress. The phylogenetic analysis revealed 2 major clusters. Digital gene expression analysis and quantitative real-time RT-PCR depicted the differential expression pattern of MusaBAG genes under abiotic and biotic stress conditions. Further studies are warranted to uncover the role of each of these proteins in growth, PCD and stress responses so as to explore them as candidate genes for engineering transgenic banana plants with improved agronomic traits.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3