Comprehensive experimental investigation of the effective parameters on stability of silica nanoparticles during low salinity water flooding with minimum scale deposition into sandstone reservoirs

Author:

Bijani Masoud,Khamehchi Ehsan,Shabani Mehdi

Abstract

AbstractRecent studies showed the high potential of nanofluids as an enhanced oil recovery (EOR) agent in oil reservoirs. This study aimed to investigate the effects of salts and ions, the salinity of aqueous solution, total dissolved solids (TDS), scale deposition of mixing brines, surface charge as zeta potential (ZP) value, and pH of injected brines as low salinity water (LSW) on the stability of silica nanoparticles (NPs). The experiments were conducted on the stability of silica NPs at different concentrations and brines to determine optimum salinity, dilution, cations, and anions concentrations. The results showed that 10 times diluted seawater (SW#10D) was optimum low salinity water (OLSW) as injected LSW and water-based nanofluids. Results showed that by decreasing the salinity, increasing seawater dilution, and removing Mg2+ and Ca2+ cations, the amount of scale deposition decreased, and the brine's brine's brine stability of NPs in brine improved. At the optimum salinity and dilution conditions, compared with other salinities, there was less scale formation with more nanofluid stability. Obtained results from ZP measurements and dynamic light scattering (DLS) showed that by removing divalent ions (Mg2+ and Ca2+) of water-based nanofluid (low salinity hard water (LSHW) composition), more NPs were attached to the surface due to the reduction in repulsive forces between the NPs. Therefore, at optimum low salinity soft water (OLSSW), more wettability alteration occurred compared with optimum low salinity hard water (OLSHW) due to the more stability of NPs in OLSSW. The obtained results from the contact angle measurements, surface adsorption of the NPs by FESEM images, and ZP measurements showed that the predominant mechanism in enhancing oil recovery by nanofluid was the wettability alteration by disjoining pressure. According to wettability alteration results, the silica NPs with an optimized concentration in the optimized LSHW and LSSW compositions could be improved the wettability alteration by up to 23.37% and 55.81% compared with the without NPs. The optimized LSSW compared with LSHW composition could be improved the wettability alteration by up to 11.69%. In addition, OLSSW-based nanofluid compared with OLSHW could be increased wettability alteration toward strongly water-wet by up to 33.44%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3