Super-resolved quantum ghost imaging

Author:

Moodley ChanéORCID,Forbes AndrewORCID

Abstract

AbstractQuantum ghost imaging offers many advantages over classical imaging, including low photon fluxes and non-degenerate object and image wavelengths for imaging light sensitive structures, but suffers from slow image reconstruction speeds. Image reconstruction times depend on the resolution of the required image which scale quadratically with the image resolution. Here, we propose a super-resolved imaging approach based on neural networks where we reconstruct a low resolution image, which we denoise and super-resolve to a high resolution image. To test the approach, we implemented both a generative adversarial network as well as a super-resolving autoencoder in conjunction with an experimental quantum ghost imaging setup, demonstrating its efficacy across a range of object and imaging projective mask types. We achieved super-resolving enhancement of $$4\times$$ 4 × the measured resolution with a fidelity close to 90$$\%$$ % at an acquisition time of N$$^2$$ 2 measurements, required for a complete N $$\times$$ × N pixel image solution. This significant resolution enhancement is a step closer to a common ghost imaging goal, to reconstruct images with the highest resolution and the shortest possible acquisition time.

Funder

Council for Scientific and Industrial Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3