Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot

Author:

Pikus Ewa,Minias Piotr

Abstract

AbstractGenes of the Major Histocompatibility Complex (MHC) form a key component of vertebrate adaptive immunity, as they code for molecules which bind antigens of intra- and extracellular pathogens (MHC class I and II, respectively) and present them to T cell receptors. In general, MHC genes are hyper-polymorphic and high MHC diversity is often maintained within natural populations (via balancing selection) and within individuals (via gene duplications). Because of its complex architecture with tandems of duplicated genes, characterization of MHC region in non-model vertebrate species still poses a major challenge. Here, we combined de novo genome assembly and high-throughput sequencing to characterize MHC polymorphism in a rallid bird species, the Eurasian coot Fulica atra. An analysis of genome assembly indicated high duplication rate at MHC-I, which was also supported by targeted sequencing of peptide-binding exons (at least five MHC-I loci genotyped). We found high allelic richness at both MHC-I and MHC-II, although signature of diversifying selection and recombination (gene conversion) was much stronger at MHC-II. Our results indicate that Eurasian coot retains extraordinary polymorphism at both MHC classes (when compared to other non-passerine bird species), although they may be subject to different evolutionary mechanism.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3