Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features

Author:

Jeong Da Un,Lim Ki Moo

Abstract

AbstractThe pulse arrival time (PAT), the difference between the R-peak time of electrocardiogram (ECG) signal and the systolic peak of photoplethysmography (PPG) signal, is an indicator that enables noninvasive and continuous blood pressure estimation. However, it is difficult to accurately measure PAT from ECG and PPG signals because they have inconsistent shapes owing to patient-specific physical characteristics, pathological conditions, and movements. Accordingly, complex preprocessing is required to estimate blood pressure based on PAT. In this paper, as an alternative solution, we propose a noninvasive continuous algorithm using the difference between ECG and PPG as a new feature that can include PAT information. The proposed algorithm is a deep CNN–LSTM-based multitasking machine learning model that outputs simultaneous prediction results of systolic (SBP) and diastolic blood pressures (DBP). We used a total of 48 patients on the PhysioNet website by splitting them into 38 patients for training and 10 patients for testing. The prediction accuracies of SBP and DBP were 0.0 ± 1.6 mmHg and 0.2 ± 1.3 mmHg, respectively. Even though the proposed model was assessed with only 10 patients, this result was satisfied with three guidelines, which are the BHS, AAMI, and IEEE standards for blood pressure measurement devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3