Antivirus applied to JAR malware detection based on runtime behaviors

Author:

Pinheiro Ricardo P.ORCID,Lima Sidney M. L.ORCID,Souza Danilo M.,Silva Sthéfano H. M. T.,Lopes Petrônio G.,de Lima Rafael D. T.,de Oliveira Jemerson R.,Monteiro Thyago de A.,Fernandes Sérgio M. M.,Albuquerque Edison de Q.,Silva Washington W. A. da,Santos Wellington P. dos

Abstract

AbstractJava vulnerabilities correspond to 91% of all exploits observed on the worldwide web. The present work aims to create antivirus software with machine learning and artificial intelligence and master in Java malware detection. Within the proposed methodology, the suspected JAR sample is executed to intentionally infect the Windows OS monitored in a controlled environment. In all, our antivirus monitors and considers, statistically, 6824 actions that the suspected JAR file can perform when executed. Our antivirus achieved an average performance of 91.58% in the distinction between benign and malware JAR files. Different initial conditions, learning functions and architectures of our antivirus are investigated. The limitations of commercial antiviruses can be supplied by intelligent antiviruses. Instead of blacklist-based models, our antivirus allows JAR malware detection preventively and not reactively as Oracle’s Java and traditional antivirus modus operandi.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference36 articles.

1. Oracle, J. Java technology (2021)https://www.java.com.

2. Wagner, G. & Gal, A. F. M. “slimming’’ a java virtual machine by way of cold code removal and optimistic partial program loading. Sci. Comput. Program. 76, 1037–1053. https://doi.org/10.1016/j.scico.2010.04.008 (2011).

3. Oracle, J. Javaone 2012 review: Make the future java (2012) http://www.oracle.com/technetwork/articles/Java/Javaone12review-1863742.html.

4. CISCO. Cisco 2014 annual security report. (2014) http://www.efocus.sk/images/uploads/Cisco_2014_ASR.pdf.

5. IBM. Ibm x-force threat intelligence quarterly 1q 2014. Explore the latest security trends-from malware delivery to mobile device risks-based on 2013 year-end data and ongoing research (2014).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3