Author:
Wu Julia W.,Yaqub Amber,Ma Yuan,Koudstaal Wouter,Hofman Albert,Ikram M. Arfan,Ghanbari Mohsen,Goudsmit Jaap
Abstract
AbstractApplication of biological age as a measure of an individual´s health status offers new perspectives into extension of both lifespan and healthspan. While algorithms predicting mortality and most aging-related morbidities have been reported, the major shortcoming has been an inability to predict dementia. We present a community-based cohort study of 1930 participants with a mean age of 72 years and a follow-up period of over 7 years, using two variants of a phenotypic blood-based algorithm that either excludes (BioAge1) or includes (BioAge2) neurofilament light chain (NfL) as a neurodegenerative marker. BioAge1 and BioAge2 predict dementia equally well, as well as lifespan and healthspan. Each one-year increase in BioAge1/2 was associated with 11% elevated risk (HR 1.11; 95%CI 1.08–1.14) of mortality and 7% elevated risk (HR 1.07; 95%CI 1.05–1.09) of first morbidities. We additionally tested the association of microRNAs with age and identified 263 microRNAs significantly associated with biological and chronological age alike. Top differentially expressed microRNAs based on biological age had a higher significance level than those based on chronological age, suggesting that biological age captures aspects of aging signals at the epigenetic level. We conclude that accelerated biological age for a given age is a predictor of major age-related morbidity, including dementia, among healthy elderly.
Publisher
Springer Science and Business Media LLC