Protein co-expression networks identified from HOT lesions of ER+HER2–Ki-67high luminal breast carcinomas

Author:

Yamada Kimito,Nishimura Toshihide,Wakiya Midori,Satoh Eiichi,Fukuda Tetsuya,Amaya Keigo,Bando Yasuhiko,Hirano Hiroshi,Ishikawa Takashi

Abstract

AbstractPatients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative/Ki-67-high (ER+HER2–Ki-67high) luminal breast cancer have a worse prognosis and do not respond to hormonal treatment and chemotherapy. This study sought to identify disease-related protein networks significantly associated with this subtype, by assessing in-depth proteomes of 10 lesions of high and low Ki-67 values (HOT, five; COLD, five) microdissected from the five tumors. Weighted correlation network analysis screened by over-representative analysis identified the five modules significantly associated with the HOT lesions. Pathway enrichment analysis, together with causal network analysis, revealed pathways of ribosome-associated quality controls, heat shock response by oxidative stress and hypoxia, angiogenesis, and oxidative phosphorylation. A semi-quantitative correlation of key-protein expressions, protein co-regulation analysis, and multivariate correlation analysis suggested co-regulations via network-network interaction among the four HOT-characteristic modules. Predicted highly activated master and upstream regulators were most characteristic to ER-positive breast cancer and associated with oncogenic transformation, as well as resistance to chemotherapy and endocrine therapy. Interestingly, inhibited intervention causal networks of numerous chemical inhibitors were predicted within the top 10 lists for the WM2 and WM5 modules, suggesting involvement of potential therapeutic targets in those data-driven networks. Our findings may help develop therapeutic strategies to benefit patients.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3