Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches

Author:

Praveen Bushra,Talukdar Swapan,Shahfahad ,Mahato Susanta,Mondal Jayanta,Sharma Pritee,Islam Abu Reza Md. Towfiqul,Rahman Atiqur

Abstract

AbstractThis study analyzes and forecasts the long-term Spatio-temporal changes in rainfall using the data from 1901 to 2015 across India at meteorological divisional level. The Pettitt test was employed to detect the abrupt change point in time frame, while the Mann-Kendall (MK) test and Sen’s Innovative trend analysis were performed to analyze the rainfall trend. The Artificial Neural Network-Multilayer Perceptron (ANN-MLP) was employed to forecast the upcoming 15 years rainfall across India. We mapped the rainfall trend pattern for whole country by using the geo-statistical technique like Kriging in ArcGIS environment. Results show that the most of the meteorological divisions exhibited significant negative trend of rainfall in annual and seasonal scales, except seven divisions during. Out of 17 divisions, 11 divisions recorded noteworthy rainfall declining trend for the monsoon season at 0.05% significance level, while the insignificant negative trend of rainfall was detected for the winter and pre-monsoon seasons. Furthermore, the significant negative trend (−8.5) was recorded for overall annual rainfall. Based on the findings of change detection, the most probable year of change detection was occurred primarily after 1960 for most of the meteorological stations. The increasing rainfall trend had observed during the period 1901–1950, while a significant decline rainfall was detected after 1951. The rainfall forecast for upcoming 15 years for all the meteorological divisions’ also exhibit a significant decline in the rainfall. The results derived from ECMWF ERA5 reanalysis data exhibit that increasing/decreasing precipitation convective rate, elevated low cloud cover and inadequate vertically integrated moisture divergence might have influenced on change of rainfall in India. Findings of the study have some implications in water resources management considering the limited availability of water resources and increase in the future water demand.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3