Field performance on grain yield and quality and genetic diversity of overwintering cultivated rice (Oryza sativa L.) in southwest China

Author:

Liang Yongshu,Nan Wenbin,Qin Xiaojian,Zhang Hanma

Abstract

AbstractUnderstanding the field performance on grain yield and quality and the genetic diversity of overwintering (OW) cultivated rice (Oryza sativa L.) across main crop (MC) and ratooning crop (RC) is the premise to make strategies for the future OW rice variety improvement in rice production. The present field experiments were conducted in RC of 2016, in MC of both 2017 and 2018, and RC in 2019 to identify genotypes OW rice that perform stable in terms of grain yield and quality across different climate conditions. The grain yield plant-1 (GYP) and its components in six genotypes of OW rice exhibited significant difference across the 4 years (P ≤ 0.05), the maximum GYP in OW6 rice was harvested (60.28 g) in MC of 2017, but the minimum GYP in OW1 rice was harvested (33.01 g) in MC of 2018. Within six genotypes of OW rice, four grain shape traits displayed a relative small significant difference, four grain quality traits exhibited a relative small significant difference except for chalkiness rate (CR), there 226 pairs of significant PCC values between GYP and its components were calculated in all tested rice and varied from six in OW6 to eleven in OW1, there 130 pairs of significant PCC values among the four grain shape traits were calculated and ranged from twenty-one in OW1, 3, 5 to twenty-three in OW2, there 118 pairs of significant PCC values among the four grain quality traits were calculated and ranged from seventeen in OW2 to twenty-three in OW1. The numbers, directions, and size of PCC values for the grain yield and quality characters in all tested rice displayed a series of irregular variations. Six genotypes of OW rice were apparently distinguished by employing 196 pairs of simple-sequence repeats (SSRs) markers and exhibited abundant genetic diversity at the DNA level. Data from this study provide an extensive archive for the future exploration and innovation of overwintering cultivated rice variety.

Funder

The Chongqing Education Commission Natural Science Foundation of China

Chongqing Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3