Characterization of the Dahl salt-sensitive rat as a rodent model of inherited, widespread, persistent pain

Author:

Ferrari Luiz F.,Rey Charles,Ramirez Anna,Dziuba Adam,Zickella Jacqueline,Zickella Michael,Raff Hershel,Taylor Norman E.

Abstract

AbstractAnimal models are essential for studying the pathophysiology of chronic pain disorders and as screening tools for new therapies. However, most models available do not reproduce key characteristics of clinical persistent pain. This has limited their ability to accurately predict which new medicines will be clinically effective. Here, we characterize the Dahl salt-sensitive (SS) rat strain as the first rodent model of inherited widespread hyperalgesia. We show that this strain exhibits physiological phenotypes known to contribute to chronic pain, such as neuroinflammation, defective endogenous pain modulation, dysfunctional hypothalamic–pituitary–adrenal axis, increased oxidative stress and immune cell activation. When compared with Sprague Dawley and Brown Norway rats, SS rats have lower nociceptive thresholds due to increased inflammatory mediator concentrations, lower corticosterone levels, and high oxidative stress. Treatment with dexamethasone, the reactive oxygen species scavenger tempol, or the glial inhibitor minocycline attenuated the pain sensitivity in SS rats without affecting the other strains while indomethacin and gabapentin provided less robust pain relief. Moreover, SS rats presented impaired diffuse noxious inhibitory controls and an exacerbated response to the proalgesic mediator PGE2, features of generalized pain conditions. These data establish this strain as a novel model of spontaneous, widespread hyperalgesia that can be used to identify biomarkers for chronic pain diagnosis and treatment.

Funder

NIH/NIGMS

Advocate Aurora Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3