Author:
Hauck Theresa,Kadam Sheetal,Heinz Katharina,Garcia Peraza Maria,Schmid Rafael,Kremer Andreas E.,Wolf Katharina,Bauer Alina,Horch Raymund E.,Arkudas Andreas,Kengelbach-Weigand Annika
Abstract
AbstractPrevious studies provide high evidence that autotaxin (ATX)-lysophosphatidic acid (LPA) signaling through LPA receptors (LPAR) plays an important role in breast cancer initiation, progression, and invasion. However, its specific role in different breast cancer cell lines remains to be fully elucidated to offer improvements in targeted therapies. Within this study, we analyzed in vitro the effect of LPA 18:1 and the LPAR1, LPAR3 (and LPAR2) inhibitor Ki16425 on cellular functions of different human breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF-7, BT-474, SKBR-3) and the human breast epithelial cell line MCF-10A, as well as Interleukin 8 (IL-8), Interleukin 6 (IL-6) and tumor necrosis factor (TNF)-alpha cytokine secretion after LPA-incubation. ATX-LPA signaling showed a dose-dependent stimulatory effect especially on cellular functions of triple-negative and luminal A breast cancer cell lines. Ki16425 inhibited the LPA-induced stimulation of triple-negative breast cancer and luminal A cell lines in variable intensity depending on the functional assay, indicating the interplay of different LPAR in those assays. IL-8, IL-6 and TNF-alpha secretion was induced by LPA in MDA-MB-468 cells. This study provides further evidence about the role of the ATX-LPA axis in different breast cancer cell lines and might contribute to identify subtypes suitable for a future targeted therapy of the ATX-LPA axis.
Funder
Forschungsstiftung Medizin University Hospital Erlangen
Manfred Roth Foundation
Deutsche Forschungsgemeinschaft
Interdisciplinary center for clinical research (IZKF), Friedrich-Alexander-University of Erlangen-Nürnberg
Bavarian Equal Opportunities Sponsorship
ELAN FAU
Friedrich-Alexander-Universität Erlangen-Nürnberg
Open Access Publication Funding
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献