Adsorption of radon on silver exchanged zeolites at ambient temperatures

Author:

Heinitz Stephan,Mermans Jasper,Maertens Dominic,Skliarova Hanna,Aerts Alexander,Cardinaels Thomas,Gueibe Christophe,Rutten Jos,Ireland Natalie,Kuznicki Daniel,Kuznicki Steven

Abstract

AbstractSince more than 100 years, the adsorption of the radioactive noble gas radon (222Rn) is performed on activated charcoal at cryogenic temperatures. There is little—if any—progress in the field of radon adsorption at ambient conditions to facilitate the development of simple and compact radon adsorption systems. We report here on the truly remarkable property of the synthetic silver-exchanged zeolites Ag-ETS-10 and Ag-ZSM-5 to strongly adsorb radon gas at room temperature. 222Rn breakthrough experiments in nitrogen carrier gas have shown that these materials exhibit radon adsorption coefficients exceeding 3000 m3/kg at 293 K, more than two orders of magnitude larger than any noble gas adsorbent known to date. Water vapor and carrier gas type were found to strongly influence radon adsorption, practically qualifying these silver exchanged materials as a new class of radon adsorbents. Our results demonstrate that Ag-ETS-10 and Ag-ZSM-5 are materials that show high affinity towards radon gas at ambient temperatures making them candidate materials for environmental and industrial 222Rn mitigation applications. Adsorption systems based on silver loaded zeolites have the potential to replace activated charcoal as material of choice in many radon related research areas by avoiding the necessity of cryogenic cooling.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3