Toxicology of Heavy Metals to Subsurface Lithofacies and Drillers during Drilling of Hydrocarbon Wells

Author:

Okoro Emmanuel E.,Okolie Amarachi G.,Sanni Samuel E.,Omeje Maxwell

Abstract

AbstractThis study investigates the toxicological effects of heavy metals on lithofacies of the subsurface in a drilled hydrocarbon well as well as, to the drilling crew and people in an environment. The pollution levels of selected heavy metals were considered alongside their ecological effects during dry and wet seasons. The health hazard potential of human exposures to the metals, were estimated in terms of intensity and time using the USEPA recommended model. The heavy metal concentration for each layer decreased across the lithofacies as follows; Layer 5> Layer 4> Layer 3> Layer 2> Layer 1. The average concentrations of the heavy metals present in the samples obtained from the formation zone, varied significantly and decreased in the order of Al> Zn> Ni> Pb> Cr> Cu> Cd> As> Hg. The highest concentration of Al, Cu, and Zn in this present study were within the maximum allowable limits whereas, those of As, Cd, Hg and Ni were all above their maximum allowable limits. Among the transition metals analysed, the maximum mean daily dose of Pb (9.18 × 10−6 mg/kg/d) and Cr (1.42 × 10−6 mg/kg/d) were confirmed susceptible to human carcinogens and environmental toxins. The estimated hazard quotient shows that the dermal pathway is the most likely route via which the drilling crew and people in the environment can get contaminated. The cancer risk values for the Pb (7.72 × 10−4), Cd (1.35 × 10−1), Ni (9.97 × 10−3), As (1.50 × 10−1) and Cr (3.16 × 10−3) are all above the acceptable values. The cancer risk contribution for each metal was in the order of As> Cd> Ni> Cr> Pb. Layer 5 had the maximum Geo-accumulation index for the heavy metals considered. This higher Geo-accumulation index noted at the depth in Layer 5 may be attributed to the effect of water basin with turbidity currents, deltas, and shallow marine sediment deposits with storm impacted conditions. Also, the pollution from lead (Pb) in the dry season was maximum with an Igeo value> 5 for all the lithofacies considered because of the low background concentration of the metal. During the wet season, the heavy metal pollution rate was moderate for Zn whereas, it was extremely polluted with respect to Pb. The ecological risk potential of Pb shows that the associated ecological risks range from 536 – 664 in the wet season (i.e. extremely strong) and 2810 – 3480 in dry season (extremely strong). The high level of Pb pollution found in the area at such shallow depth may be due to the sedimentary folds possibly caused by the full spectrum of metamorphic rocks and primary flow structures at shallow depths. This was used to identify the environmental sensitivities of the heavy metals during the dry and wet seasons.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3