Statistical modeling approach for PM10 prediction before and during confinement by COVID-19 in South Lima, Perú

Author:

Cabello-Torres Rita Jaqueline,Estela Manuel Angel Ponce,Sánchez-Ccoyllo Odón,Romero-Cabello Edison Alessandro,Ávila Fausto Fernando García,Castañeda-Olivera Carlos Alberto,Valdiviezo-Gonzales Lorgio,Eulogio Carlos Enrique Quispe,De La Cruz Alex Rubén Huamán,López-Gonzales Javier Linkolk

Abstract

AbstractA total of 188,859 meteorological-PM$$_{10}$$ 10 data validated before (2019) and during the COVID-19 pandemic (2020) were used. In order to predict PM$$_{10}$$ 10 in two districts of South Lima in Peru, hourly, daily, monthly and seasonal variations of the data were analyzed. Principal Component Analysis (PCA) and linear/nonlinear modeling were applied. The results showed the highest annual average PM$$_{10}$$ 10 for San Juan de Miraflores (SJM) (PM$$_{10}$$ 10 -SJM: 78.7 $$\upmu$$ μ g/m$$^{3}$$ 3 ) and the lowest in Santiago de Surco (SS) (PM$$_{10}$$ 10 -SS: 40.2 $$\upmu$$ μ g/m$$^{3}$$ 3 ). The PCA showed the influence of relative humidity (RH)-atmospheric pressure (AP)-temperature (T)/dew point (DP)-wind speed (WS)-wind direction (WD) combinations. Cool months with higher humidity and atmospheric instability decreased PM$$_{10}$$ 10 values in SJM and warm months increased it, favored by thermal inversion (TI). Dust resuspension, vehicular transport and stationary sources contributed more PM$$_{10}$$ 10 at peak times in the morning and evening. The Multiple linear regression (MLR) showed the best correlation (r = 0.6166), followed by the three-dimensional model LogAP-LogWD-LogPM$$_{10}$$ 10 (r = 0.5753); the RMSE-MLR (12.92) exceeded that found in the 3D models (RMSE $$<0.3$$ < 0.3 ) and the NSE-MLR criterion (0.3804) was acceptable. PM$$_{10}$$ 10 prediction was modeled using the algorithmic approach in any scenario to optimize urban management decisions in times of pandemic.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3