The TIGIT+ T regulatory cells subset associates with nosocomial infection and fatal outcome in COVID-19 patients under mechanical ventilation

Author:

de Lima Mikhael Haruo Fernandes,Machado Caio Cavalcante,Nascimento Daniele Carvalho,Silva Camila Meirelles S.,Toller-Kawahisa Juliana Escher,Rodrigues Tamara Silva,Veras Flavio Protassio,Pontelli Marjorie Cornejo,Castro Italo A.,Zamboni Dario Simões,Filho José-Carlos A.,Cunha Thiago M.,Arruda Eurico,da Cunha Larissa Dias,Oliveira Renê D. R.,Cunha Fernando Q.,Louzada-Junior Paulo

Abstract

AbstractThe TIGIT+FOXP3+Treg subset (TIGIT+Tregs) exerts robust suppressive activity on cellular immunity and predisposes septic individuals to opportunistic infection. We hypothesized that TIGIT+Tregs could play an important role in intensifying the COVID-19 severity and hampering the defense against nosocomial infections during hospitalization. Herein we aimed to verify the association between the levels of the TIGIT+Tregs with the mechanical ventilation requirement, fatal outcome, and bacteremia during hospitalization. TIGIT+Tregs were immunophenotyped by flow cytometry from the peripheral blood of 72 unvaccinated hospitalized COVID-19 patients at admission from May 29th to August 6th, 2020. The patients were stratified during hospitalization according to their mechanical ventilation requirement and fatal outcome. COVID-19 resulted in a high prevalence of the TIGIT+Tregs at admission, which progressively increased in patients with mechanical ventilation needs and fatal outcomes. The prevalence of TIGIT+Tregs positively correlated with poor pulmonary function and higher plasma levels of LDH, HMGB1, FGL2, and TNF. The non-survivors presented higher plasma levels of IL-33, HMGB1, FGL2, IL-10, IL-6, and 5.54 times more bacteremia than survivors. Conclusions: The expansion of the TIGIT+Tregs in COVID-19 patients was associated with inflammation, lung dysfunction, bacteremia, and fatal outcome.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Center for Research in Inflammatory Diseases (CRID), Brazil

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3