The magnetic field strength and the force distance dependency of the magnetically controlled growing rods used for early onset scoliosis

Author:

Diekhöner Lars,Meyer Charlotte Sommer,Eiskjær Søren

Abstract

AbstractMagnetically controlled growing rods (MCGR’s) have revolutionized the treatment of early-onset scoliosis (EOS) because painless lengthenings can be done in the outpatient clinic without anesthesia. Untreated EOS leads to respiratory insufficiency and reduced life expectancy. However, MCGR’s have inherent complications like non-functioning of the lengthening mechanism. We quantify an important failure mechanism and give advice on how to avoid this complication. The magnetic field strength was measured on new/explanted rods at different distances between the external remote controller and the MCGR and likewise in patients before/after distractions. The magnetic field strength of the internal actuator decayed fast with increasing distances and plateaued at 25–30 mm approximating zero. Two new and 12 explanted MCGRs was used for the lab measurements of the elicited force using a forcemeter. At a distance of 25 mm, the force was reduced to approximately 40% (ca. 100 N) compared to zero distance (ca. 250 N), most so for explanted rods. This is used to point out the importance of minimizing the implantation depth to ensure proper functionality of the rod lengthening in clinical use for EOS patients. A distance of 25 mm from skin to MCGR should be considered a relative contraindication to clinical use in EOS patients.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond the gut: spectrum of magnetic surgery devices;Frontiers in Surgery;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3