Experimental design and analysis of advanced three phase converter for PV application with WCO-P&O MPPT controller

Author:

Krishnaram K.,Sivamani S.,Alaas Zuhair,Ahmed M. M. R.,Senthilkumar S.,Raj S. Antony

Abstract

AbstractPhotovoltaic (PV)-based power generation systems are becoming increasingly popular as a due to its high performance and cleanliness. Several factors influence the performance of a PV system, including shadowing effects. PV systems employ MPPT methodologies to obtain the power from PV array. Conventional MPPTs works well under normal conditions when there is no shadow effects or partial shading. The presence of partial shading affects the system performance and generates several power peaks. This complicates the process of finding out of the global peak (GMPP) with improved tracking efficiency and reduced settling time including conversion efficiency. This work proposes three hybrid MPPT techniques: Water Cycle Optimisation-Perturb and Observe (WCO-PO), Artificial Neural Network Supported Adaptable Stepped-Scaled Perturb and Observe (ANN-ASSPO), Grey Wolf Optimisation-Modified Fast Terminal Sliding Mode Controller (GWO-MFTSMC), and two conventional MPPT techniques WCO and P&O have been implemented. The proposed system utilizes interleaved boost converter with three phase. The performances of proposed hybrid MPPTs strategies were compared in terms of output voltage, output current and extracted power. The comparison also includes conversion efficiency and average settling time. To analyse the performances, four different cases have been used to test the efficacy of hybrid MPPTs under changing climatic conditions. The MATLAB/Simulink tool has been used to analyze the PV system performances. In the three hybrid MPPT techniques, WCO-PO has performed better when compared to other two hybrid MPPTs in terms of conversion efficiency (99.56%) and settling time (1.4 m).

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3