Author:
Wong Renata,Chang Weng-Long,Chung Wen-Yu,Vasilakos Athanasios V.
Abstract
AbstractA dominating set of a graph $$G = (V, E)$$
G
=
(
V
,
E
)
is a subset U of its vertices V, such that any vertex of G is either in U, or has a neighbor in U. The dominating-set problem is to find a minimum dominating set in G. Dominating sets are of critical importance for various types of networks/graphs, and find therefore potential applications in many fields. Particularly, in the area of communication, dominating sets are prominently used in the efficient organization of large-scale wireless ad hoc and sensor networks. However, the dominating set problem is also a hard optimization problem and thus currently is not efficiently solvable on classical computers. Here, we propose a biomolecular and a quantum algorithm for this problem, where the quantum algorithm provides a quadratic speedup over any classical algorithm. We show that the dominating set problem can be solved in $$O(2^{n/2})$$
O
(
2
n
/
2
)
queries by our proposed quantum algorithm, where n is the number of vertices in G. We also demonstrate that our quantum algorithm is the best known procedure to date for this problem. We confirm the correctness of our algorithm by executing it on IBM Quantum’s qasm simulator and the Brooklyn superconducting quantum device. And lastly, we show that molecular solutions obtained from solving the dominating set problem are represented in terms of a unit vector in a finite-dimensional Hilbert space.
Funder
National Center for Theoretical Sciences
National Science and Technology Council, the Ministry of Education
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献