A novel approach for the biosynthesis of silver nanoparticles using the defensive gland extracts of the beetle, Luprops tristis Fabricius

Author:

Ajaykumar Anthyalam Parambil,Sabira Ovungal,Sebastian Merin,Varma Sudhir Rama,Roy Kanakkassery Balan,Binitha Valiyaparambil Sivadasan,Rasheed Vazhanthodi Abdul,Jayaraj Kodangattil Narayanan,Vignesh Attuvalappil Ravidas

Abstract

AbstractDiscovering novel natural resources for the biological synthesis of metal nanoparticles is one of the two key challenges facing by the field of nanoparticle synthesis. The second challenge is a lack of information on the chemical components needed for the biological synthesis and the chemical mechanism involved in the metal nanoparticles synthesis. In the current study, microwave-assisted silver nanoparticle (AgNP) synthesis employing the defensive gland extract of Mupli beetle, Luprops tristis Fabricius (Order: Coleoptera; Family: Tenebrionidae), addresses these two challenges. This study was conducted without killing the experimental insect. Earlier studies in our laboratory showed the presence of the phenolic compounds, 2,3-dimethyl-1,4-benzoquinone, 1,3-dihydroxy-2-methylbenzene, and 2,5-dimethylhydroquinone in the defensive gland extract of L. tristis. The results of the current study show that the phenolic compounds in the defensive gland extract of the beetle has the ability to reduce silver ions into AgNPs and also acts as a good capping and stabilizing agent. A possible mechanism for the reduction of silver nitrate (AgNO3) into AgNPs is suggested. The synthesized AgNPs were characterized by Ultraviolet–Visible (UV–Vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy energy-dispersive X-ray (SEM–EDX) analysis and high-resolution transmission electron microscopic (HR-TEM) techniques. The stability of biologically synthesized nanoparticles was studied by zeta potential analysis. The TEM analysis confirmed that AgNPs are well dispersed and almost round shaped. The average size of nanoparticle ranges from 10 to 20 nm. EDX analysis showed that silver is the prominent metal present in the nanomaterial solution. The AgNPs synthesized have antibacterial property against both Staphylococcus aureus and Escherichia coli. Radical scavenging (DPPH) assay was used to determine the antioxidant activity of the AgNPs. AgNPs exhibited anticancer activity in a cytotoxicity experiment against Dalton’s lymphoma ascites (DLA) cell line.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3