The effects of fine and coarse particulate matter on lung function among the elderly

Author:

Chen Chi-Hsien,Wu Chih-Da,Chiang Hung-Che,Chu Dachen,Lee Kang-Yun,Lin Wen-Yi,Yeh Jih-IORCID,Tsai Kun-Wei,Guo Yue-Liang Leon

Abstract

Abstract Impaired lung function is associated with morbidity and mortality in the elderly. However, there is a paucity of data regarding the long-term effects of particulate matter (PM) on lung function among the elderly. This study evaluated the exposure-response relationship between ambient PM and different lung function indices among the elderly in Taiwan. A cross-sectional survey of individuals aged ≥65 years was conducted in Taiwan from October 2015 to September 2016. Those who attended the annual health examination for the elderly in five hospitals of varying background PM concentrations were enrolled. The long-term (2015 annual mean concentration) exposure to air pollution was estimated by the Kriging method at the residence of each subject. The association between ambient PM exposure and lung function was evaluated by linear regression modeling, with adjustments for age, sex, height, weight, educational attainment, presence of asthma or chronic obstructive pulmonary disease, smoking status, season, and co-pollutants. There were 1241 subjects (mean age, 70.5 years). The mean residential PM2.5 and PM2.5–10 in 2015 was 26.02 and 18.01 μg/m3, respectively. After adjustments for confounders and co-pollutants, the FVC decrease was best associated with fine particles (PM2.5), whereas the FEV1, FEF25–75%, FEF25% and FEF50% decreases were best associated with coarse particles (PM2.5–10). An IQR (10 μg/m3) increase in PM2.5 decreased FVC by 106.38 ml (4.47%), while an IQR (7.29 μg/m3) increase in PM2.5–10 decreased FEV1 and FEF25–75% by 91.23 ml (4.85%) and 104.44 ml/s (5.58%), respectively. Among the Taiwanese elderly, long-term PM2.5 exposure mainly decreases the vital capacity of lung function. Moreover, PM2.5–10 has a stronger negative effect on the function of conductive airways than PM2.5.

Funder

Ministry of Science and Technology, Taiwan

National Health Research Institutes

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3