Fast high quality computational ghost imaging based on saliency variable sampling detection

Author:

Liu Xuan,Hu Jun,Ju Mingchi,Wang Yingzhi,Han Tailin,Huang Jipeng,Zhou Cheng,Zhang Yongli,Song Lijun

Abstract

AbstractFast computational ghost imaging with high quality and ultra-high-definition resolution reconstructed images has important application potential in target tracking, biological imaging and other fields. However, as far as we know, the resolution (pixels) of the reconstructed image is related to the number of measurements. And the limited resolution of reconstructed images at low measurement times hinders the application of computational ghost imaging. Therefore, in this work, a new computational ghost imaging method based on saliency variable sampling detection is proposed to achieve high-quality imaging at low measurement times. This method physically variable samples the salient features and realizes compressed detection of computational ghost imaging based on the salient periodic features of the bucket detection signal. Numerical simulation and experimental results show that the reconstructed image quality of our method is similar to the compressed sensing method at low measurement times. Even at 500 (sampling rate $$0.76\%$$ 0.76 % ) measurement times, the reconstructed image of the method still has the target features. Moreover, the $$2160\times 4096$$ 2160 × 4096 (4K) pixels ultra-high-definition resolution reconstructed images can be obtained at only a sampling rate of $$0.11\%$$ 0.11 % . This method has great potential value in real-time detection and tracking, biological imaging and other fields.

Funder

Key Research and Development Projects of Jilin Province Science and Technology Department

Science Foundation of the Education Department of Jilin Province

Science and Technology Planning Project of Jilin Province

Special Funds for Provincial Industrial Innovation in Jilin Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3