Optimizing strategy for the discovery of compositionally-biased or low-complexity regions in proteins

Author:

Harrison Paul M.

Abstract

AbstractProteins can contain tracts dominated by a subset of amino acids and that have a functional significance. These are often termed ‘low-complexity regions’ (LCRs) or ‘compositionally-biased regions’ (CBRs). However, a wide spectrum of compositional bias is possible, and program parameters used to annotate these regions are often arbitrarily chosen. Also, investigators are sometimes interested in longer regions, or sometimes very short ones. Here, two programs for annotating LCRs/CBRs, namely SEG and fLPS, are investigated in detail across the whole expanse of their parameter spaces. In doing so, boundary behaviours are resolved that are used to derive an optimized systematic strategy for annotating LCRs/CBRs. Sets of parameters that progressively annotate or ‘cover’ more of protein sequence space and are optimized for a given target length have been derived. This progressive annotation can be applied to discern the biological relevance of CBRs, e.g., in parsing domains for experimental constructs and in generating hypotheses. It is also useful for picking out candidate regions of interest of a given target length and bias signature, and for assessing the parameter dependence of annotations. This latter application is demonstrated for a set of human intrinsically-disordered proteins associated with cancer.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3