Fabrication and characterization of graphene oxide-based polymer nanocomposite coatings, improved stability and hydrophobicity

Author:

Kumar Sachin Sharma Ashok,M. Nujud Badawi,Batoo Khalid Mujasam,Wonnie Ma I. A.,Ramesh K.,Ramesh S.,Shah Mohd Asif

Abstract

AbstractIn this study, acrylic-epoxy-based nanocomposite coatings loaded with different concentrations (0.5–3 wt.%) of graphene oxide (GO) nanoparticles were successfully prepared via the solution intercalation approach. The thermogravimetric analysis (TGA) revealed that the inclusion of GO nanoparticles into the polymer matrix increased the thermal stability of the coatings. The degree of transparency evaluated by the ultraviolet–visible (UV–Vis) spectroscopy showed that the lowest loading rate of GO (0.5 wt.%) had completely blocked the incoming irradiation, thus resulting in zero percent transmittance. Furthermore, the water contact angle (WCA) measurements revealed that the incorporation of GO nanoparticles and PDMS into the polymer matrix had remarkably enhanced the surface hydrophobicity, exhibiting the highest WCA of 87.55º. In addition, the cross-hatch test (CHT) showed that all the hybrid coatings exhibited excellent surface adhesion behaviour, receiving 4B and 5B ratings respectively. Moreover, the field emission scanning electron microscopy (FESEM) micrographs confirmed that the presence of the functional groups on the GO surface facilitated the chemical functionalization process, which led to excellent dispersibility. The GO composition up to 2 wt.% showed excellent dispersion and uniform distribution of the GO nanoparticles within the polymer matrix. Therefore, the unique features of graphene and its derivatives have emerged as a new class of nanofillers/inhibitors for corrosion protection applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3