Effects of different temperatures on Leiocassis longirostris gill structure and intestinal microbial composition

Author:

Zhao Zhongmeng,Zhao Han,Wang Xiongyan,Zhang Lu,Mou Chengyan,Huang Zhipeng,Ke Hongyu,Duan Yuanliang,Zhou Jian,Li Qiang

Abstract

AbstractFish are poikilothermic vertebrates and their physiological activities are affected by water temperature. In recent years, extreme weather has occurred frequently, and temperature changes have adversely affected the growth of farmed fish. To explore the changes in gill tissue structure caused by changing the water temperature and the relationship between the intestinal microbiota and the Leiocassis longirostris host adaptation mechanism, gill tissue sections and intestinal microbial 16S rRNA amplicon sequencing were conducted under different temperature stress (low temperature 4 °C, normal temperature 26 °C and high temperature 32 °C). The results showed that heat stress and cold stress caused injury and swelling, terminal congestion, cell vacuolation, and necrosis of the gill tissue of L. longirostris. For intestinal microbiota, the abundances of Pseudomonadota and Bacillota increased at the cold stress, while the abundances of Fusobacteriota and Bacteroidota increased at the heat stress. The number of opportunistic bacteria, mainly Aeromonas and Acinetobacter, was the highest under cold stress. In addition, the richness of the intestinal microbiota decreased significantly at heat and cold stresses, while evenness increased. Prediction of intestinal microbiota function showed that most common functions, such as metabolism of cofactors and vitamins, energy metabolism and replication and repair, were decreased significantly at heat stress and cold stress, and phylogenetic relationship analysis revealed significant differences among the groups. In conclusion, the change of temperature altered the gill tissue structure, and affected the structure and homeostasis of the intestinal microbiota, thus affecting the survival time of L. longirostris, and cold stress had a greater effect than heat stress.

Funder

The National Key Research and Development Program of China

The China Agriculture Research System of MOF and MARA

Technology Program of Sichuan Academy of Agricultural Sciences

The Sichuan Freshwater Fish Innovation Team of the National Modern Agricultural Industrial Technology System

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3