Non-magnetic four-port electronic circulators based on $$90^\circ $$ non-reciprocal phase-shifters

Author:

Regev Dror,Regev Shaked,Shilo Shimi,Ezri Doron,Ginzberg Nimrod,Cohen Emanuel

Abstract

AbstractThis paper presents a family of four-port electronic circulators adhering to a new topology symmetry that enables linear, low-loss transistor-based circuit implementations. The underlying principle of operation employs a property of the $$90^\circ $$ 90 non-reciprocal phase shifter (NRPS) derived in this article. Under quadrature excitation, the NRPS transfers or reflects exciting signals depending on their respective phase lead. The fundamental topology consists of two back-to-back quadrature hybrid couplers with a $$90^\circ $$ 90 NRPS connected in parallel over the line of symmetry, interrupting the circuit’s reciprocity to achieve circular propagation by bypassing or reflecting at the NRPS but not through. We break down the circuit into three fundamental four-port sub-circuits. The transfer function of the cascaded sub-circuits enables an analysis with specific hybrid couplers. It also allows a synthesis of other four-port passive sub-circuits that, with an NRPS, achieve a four-port circulator transfer function by solving a matrix equation. Some of the mathematical solutions have circuit realizations, which are adjusted quadrature hybrid structures that differ from each other by the characteristic impedance of their arms. Two familiar solutions, including the standard quadrature hybrid and a modified design with equal $$Z_0$$ Z 0 , $$\lambda /4$$ λ / 4 arms, are simulated utilizing lossless lumped element arms and a 4-Path, 65-nm NMOS $$90^\circ $$ 90 NRPS. The simulation results verify the theoretical analysis and enable a comparison between the performance of the two circuit solutions around 1 GHz. The four-port circulator with equal arms is implemented on a PCB and measured, yielding better than 1.5 dB insertion loss between the circulator ports, over 17 dB port-to-port reverse isolation, and better than 20 dBr port matching around 1 GHz.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3