Bovine tumor necrosis factor-alpha Increases IL-6, IL-8, and PGE2 in bovine fibroblast-like synoviocytes by metabolic reprogramming

Author:

Manosalva Carolina,Alarcon Pablo,Quiroga John,Teuber Stefanie,Carretta Maria D.,Bustamante Hedie,Lopez-Muñoz Rodrigo,Hidalgo Maria A.,Burgos Rafael A.

Abstract

AbstractLameness is a common condition in dairy cattle caused by infectious or noninfectious agents. Joint lesions are the second most common cause of lameness and can be diagnosed in association with the presentation of digit injuries. Fibroblast-like synoviocyte (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the expression of proinflammatory mediators. Tumor necrosis factor-alpha (TNF-α) is a potent proinflammatory cytokine involved in cyclooxygenase 2 (COX-2) and proinflammatory cytokine expression in FLS. Previously, TNF-α was demonstrated to increase hypoxia-inducible Factor 1 (HIF-1), a transcription factor that rewires cellular metabolism and increases the expression of interleukin (IL)-6 in bovine FLS (bFLS). Despite this, the proinflammatory effects of TNF-α in bFLS on metabolic reprogramming have been poorly studied. We hypothesized that TNF-α increases glycolysis and in this way controls the expression of IL-6, IL-8, and COX-2 in bFLS. Results first, gas chromatography/mass spectrometry (GC/MS)-based untargeted metabolomics revealed that bTNF-α altered the metabolism of bFLS, increasing glucose, isoleucine, leucine, methionine, valine, tyrosine, and lysine and decreasing malate, fumarate, α-ketoglutarate, stearate, palmitate, laurate, aspartate, and alanine. In addition, metabolic flux analysis using D-glucose-13C6 demonstrated an increase of pyruvate and a reduction in malate and citrate levels, suggesting a decreased flux toward the tricarboxylic acid cycle after bTNF-α stimulation. However, bTNF-α increased lactate dehydrogenase subunit A (LDHA), IL-6, IL-8, IL-1β and COX-2 expression, which was dependent on glycolysis and the PI3K/Akt pathway. The use of FX11 and dichloroacetate (DCA), an inhibitor of LDHA and pyruvate dehydrogenase kinase (PDK) respectively, partially reduced the expression of IL-6. Our results suggest that bTNF-α induces metabolic reprogramming that favors glycolysis in bFLS and increases IL-6, IL-8, IL-1β and COX-2/PGE2.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Agencia Nacional de Investigación y Desarrollo

Fondo de Equipamiento Científico y Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3