Optimization of solid waste collection using RSM approach, and strategies delivering sustainable development goals (SDG’s) in Jeddah, Saudi Arabia

Author:

Radwan Neyara,Khan Nadeem A.,Elmanfaloty Rania Abdou Gaber

Abstract

AbstractThe rapid industrial development, high population growth, and rapid urbanization of Saudi Arabia have led to increased pollution and waste levels. Every day, solid waste disposal for governments and local authorities becomes a significant challenge. Saudi Arabia produces over 15 million tonnes of solid waste annually, with a population of around 29 million. The waste production per person is estimated at between 1.5 and 1.8 kg per day per person. About 75% of the population in urban areas is concentrated, making it imperative that government steps are taken to boost the country's waste recycling and management scenario. The production of solid waste in Riyadh, Jeddah, and Dammam, three of the largest cities, exceeds seven million tonnes annually, which shows the enormity of the civic body problem. During this study, the design Expert software was involved in the optimization of process parameters during the collection of municipal solid waste (MSW) from Jeddah city. The use of design experiments and numerical optimization is quite effective in optimizing the different process parameters on the overall cost. Saudi Arabia has a critical need for a resilient waste system and agile waste management system to control its municipal solid waste quickly and environmentally friendly for achieve Saudi Vision 2030. For this study design of experiment, software was employed to optimize the cost per trip, thereby considering process parameters. It is therefore essential to examine the existing practices and future opportunities for solid waste collection, storage, and disposal. This study considered that MSW generated in Saudi Arabia which is having great potential to be converted into wealth. Hence, considering the current environment situation, energy prospective and future management strategies for MSW have also been reviewed.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3