A day in the life of mitochondria reveals shifting workloads

Author:

Weinrich Tobias W.,Kam Jaimie Hoh,Ferrara Bill T.,Thompson Elinor P.,Mitrofanis John,Jeffery GlenORCID

Abstract

Abstract Mitochondria provide energy for cellular function. We examine daily changing patterns of mitochondrial function and metabolism in Drosophila in vivo in terms of their complex (I-IV) activity, ATP production, glycolysis, and whole fly respiration in the morning, afternoon and night. Complex activity and respiration showed significant and unexpected variation, peaking in the afternoon. However, ATP levels by contrast are >40% greater in the morning and lowest at night when glycolysis peaks. Complex activity modulation was at the protein level with no evidence for differential transcription over the day. Timing differences between increased ATP production and peaks of complex activity may result from more efficient ATP production early in the day leaving complex activity with spare capacity. Optical stimulation of mitochondria is only possible in the mornings when there is such spare capacity. These results provide first evidence of shifts in cellular energy capacity at the organism level. Understanding their translation may be significant to the chosen timing of energy demanding interventions to improve function and health.

Funder

RCUK | Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3