Innovative microwave in situ approach for crystallizing TiO2 nanoparticles with enhanced activity in photocatalytic and photovoltaic applications

Author:

Kubiak Adam,Zalas Maciej,Cegłowski Michał

Abstract

AbstractThis investigation introduces an innovative approach to microwave-assisted crystallization of titania nanoparticles, leveraging an in situ process to expedite anatase crystallization during microwave treatment. Notably, this technique enables the attainment of crystalline material at temperatures below 100 °C. The physicochemical properties, including crystallinity, morphology, and textural properties, of the synthesized TiO2 nanomaterials show a clear dependence on the microwave crystallization temperature. The presented microwave crystallization methodology is environmentally sustainable, owing to heightened energy efficiency and remarkably brief processing durations. The synthesized TiO2 nanoparticles exhibit significant effectiveness in removing formic acid, confirming their practical utility. The highest efficiency of formic acid photodegradation was demonstrated by the T_200 material, reaching almost 100% efficiency after 30 min of irradiation. Furthermore, these materials find impactful application in dye-sensitized solar cells, illustrating a secondary avenue for the utilization of the synthesized nanomaterials. Photovoltaic characterization of assembled DSSC devices reveals that the T_100 material, synthesized at a higher temperature, exhibits the highest photoconversion efficiency attributed to its outstanding photocurrent density. This study underscores the critical importance of environmental sustainability in the realm of materials science, highlighting that through judicious management of the synthesis method, it becomes feasible to advance towards the creation of multifunctional materials.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3