A computationally efficient hybrid 2D–3D subwoofer model

Author:

Bokhari Ahmad H.,Berggren Martin,Noreland Daniel,Wadbro Eddie

Abstract

AbstractA subwoofer generates the lowest frequency range in loudspeaker systems. Subwoofers are used in audio systems for live concerts, movie theatres, home theatres, gaming consoles, cars, etc. During the last decades, numerical simulations have emerged as a cost- and time-efficient complement to traditional experiments in the design process of different products. The aim of this study is to reduce the computational time of simulating the average response for a given subwoofer design. To this end, we propose a hybrid 2D–3D model that reduces the computational time significantly compared to a full 3D model. The hybrid model describes the interaction between different subwoofer components as interacting modules whose acoustic properties can partly be pre-computed. This allows us to efficiently compute the performance of different subwoofer design layouts. The results of the hybrid model are validated against both a lumped element model and a full 3D model over a frequency band of interest. The hybrid model is found to be both accurate and computationally efficient.

Funder

University Of Umea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference7 articles.

1. Geddes, E. R. An introduction to band-pass loudspeaker systems. J. Audio Eng. Soc. 37, 308–342 (1989).

2. Matusiak, G. P. & Dobrucki, A. Fourth-order symmetrical band-pass loudspeaker systems. J. Audio Eng. Soc 50, 4–18 (2002).

3. Colloms, M. & Darlington, P. High Performance Loudspeakers (Wiley, New York, 2005).

4. Kirkup, S. The Boundary Element Method in Acoustics: A Development in Fortran (Integral Equation Methods in Engineering) (Integrated Sound Software, 1998).

5. COMSOL, Inc. COMSOL Multiphysics Reference Manual, version 5.3 (2019).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Loudspeaker cabinet design by topology optimization;Scientific Reports;2023-12-01

2. Optimising process and product performance in complex systems: a study in the automotive industry;International Journal of Quality & Reliability Management;2022-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3