Improving prediction of blood cancer using leukemia microarray gene data and Chi2 features with weighted convolutional neural network

Author:

Alabdulqader Ebtisam Abdullah,Alarfaj Aisha Ahmed,Umer Muhammad,Eshmawi Ala’ Abdulmajid,Alsubai Shtwai,Kim Tai-hoon,Ashraf Imran

Abstract

AbstractBlood cancer has emerged as a growing concern over the past decade, necessitating early diagnosis for timely and effective treatment. The present diagnostic method, which involves a battery of tests and medical experts, is costly and time-consuming. For this reason, it is crucial to establish an automated diagnostic system for accurate predictions. A particular field of focus in medical research is the use of machine learning and leukemia microarray gene data for blood cancer diagnosis. Even with a great deal of research, more improvements are needed to reach the appropriate levels of accuracy and efficacy. This work presents a supervised machine-learning algorithm for blood cancer prediction. This work makes use of the 22,283-gene leukemia microarray gene data. Chi-squared (Chi2) feature selection methods and the synthetic minority oversampling technique (SMOTE)-Tomek resampling is used to overcome issues with imbalanced and high-dimensional datasets. To balance the dataset for each target class, SMOTE-Tomek creates synthetic data, and Chi2 chooses the most important features to train the learning models from 22,283 genes. A novel weighted convolutional neural network (CNN) model is proposed for classification, utilizing the support of three separate CNN models. To determine the importance of the proposed approach, extensive experiments are carried out on the datasets, including a performance comparison with the most advanced techniques. Weighted CNN demonstrates superior performance over other models when coupled with SMOTE-Tomek and Chi2 techniques, achieving a remarkable 99.9% accuracy. Results from k-fold cross-validation further affirm the supremacy of the proposed model.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3