Efficient reduction of vanadium (V) with biochar and experimental parameters optimized by response surface methodology

Author:

Peng Hao,Wang Laixin,Guo Jing,Wu Yuting,Li Bing,Lin Yinhe

Abstract

AbstractWater pollution deteriorates ecosystems and has a great threaten to the environment. The environmental benefits of wastewater treatment are extremely important to minimize pollutants. Here, the biochar purchased from the related industry was used to treat the wastewater which contained high concentration of vanadium (V). The concentration of vanadium was measured by the IC-OES and the results showed that 96.1% vanadium (V) was reduced at selected reaction conditions: the mass ratio of biochar to vanadium of 5.4, reaction temperature of 90 °C, reaction time at 60 min and concentration of H2SO4 of 10 g/L, respectively. Response surface methodology confirmed that all the experimental parameters had positive effect on the reduction of vanadium (V), which could improve the reduction efficiency of vanadium (V) as increased. The influence of each parameter on the reduction process followed the order: A (Concentration of H2SO4) > C (mass ratio of biochar to vanadium) > B (mass ratio of biochar to vanadium). Especially, the mass ratio of biochar to vanadium and concentration of H2SO4 had the greatest influence on the reduction process. This paper provides a versatile strategy for the treatment of wastewater containing vanadium (V) and shows a bright tomorrow for wastewater treatment.

Funder

key development projects of the Liangshan Prefecture

National Natural Science Foundation of China

Key research and development plan of Anhui Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3